УДК 512.542

ОТДЕЛИМОСТЬ РЕШЕТКИ τ -ЗАМКНУТЫХ ТОТАЛЬНО ω -НАСЫЩЕННЫХ ФОРМАЦИЙ КОНЕЧНЫХ ГРУПП

В.Г. Сафонов, И.Н. Сафонова

Белорусский государственный университет, Минск

SEPARABILITY OF THE LATTICE OF τ -CLOSED TOTALLY ω -SATURATED FORMATIONS OF FINITE GROUPS

V.G. Safonov, I.N. Safonova

Belarusian State University, Minsk

Пусть \mathfrak{X} — некоторый непустой класс конечных групп. Полную решетку формаций \mathfrak{B} называют \mathfrak{X} -отделимой, если для любого терма $v(x_1,...,x_n)$ сигнатуры $\{\cap,\vee_\theta\}$, любых θ -формаций $\mathfrak{F}_1,...,\mathfrak{F}_n$ и любой группы $A\in\mathfrak{X}\cap v(\mathfrak{F}_1,...,\mathfrak{F}_n)$ найдутся такие \mathfrak{X} -группы $A_1\in\mathfrak{F}_1,...,A_n\in\mathfrak{F}_n$, что $A\in v(\theta\text{form}A_1,...,\theta\text{form}A_n)$. В частности, если $\mathfrak{X}=\mathfrak{G}$ — класс всех конечных групп, то решетку формаций θ называют \mathfrak{G} -отделимой или, кратко, отделимой. Доказано, что для любого подгруппового функтора τ решетка I_{∞}^{τ} всех τ -замкнутых тотально ω -насыщенных формаций является \mathfrak{G} -отделимой.

Ключевые слова: формация конечных групп, τ -замкнутая формация, тотально ω -насыщенная формация, решетка формаций, \mathfrak{G} -отделимая решетка формаций.

Let $\mathfrak X$ be a non-empty class of finite groups. A complete lattice θ of formations is said to be $\mathfrak X$ -separable if for every term $v(x_1,...,x_n)$ of signature $\{\cap,\vee_\theta\}$, θ -formations $\mathfrak F_1,...,\mathfrak F_n$, and every group $A\in \mathfrak X\cap v(\mathfrak F_1,...,\mathfrak F_n)$ exists $\mathfrak X$ -groups $A_1\in \mathfrak F_1,...,A_n\in \mathfrak F_n$, such that $A\in v(\theta \text{form} A_1,...,\theta \text{form} A_n)$. In particular, if $\mathfrak X=\mathfrak G$ is the class of all finite groups then the lattice θ of formations is said to be $\mathfrak G$ -separable or, briefly, separable. It is proved that the lattice $l_{\omega_n}^\tau$ of all τ -closed totally ω -saturated formations is $\mathfrak G$ -separable for any subgroup functor τ .

Keywords: formation of finite groups, τ -closed formation, totally ω -saturated formation, lattice of formations, \mathfrak{G} -separated lattice of formations.

Введение

В работе рассматриваются только конечные группы. Мы придерживаемся терминологии принятой в [1], [2].

Как было показано А.Н. Скибой [2, с. 159], для любого подгруппового функтора т решетка l_n^{τ} всех τ -замкнутых n-кратно насыщенных формаций является & -отделимой, а решетка разрешимых тотально насыщенных формаций 6 -отделима. Там же был поставлен вопрос о &-отделимости решетки l_{∞}^{τ} [2, вопрос 4.1.17]. Положительный ответ на данный вопрос был получен В.Г. Сафоновым [3], [4]. Указанные результаты получили свое развитие в теории частично насыщенных формаций. Так, в совместной работе Л.А. Шеметкова, А.Н. Скибы и Н.Н. Воробьева [5] была установлена $\mathfrak G$ -отделимость решетки l_{ω}^{τ} всех τ-замкнутых *n*-кратно ω-насыщенных формаций. Позднее, в работе [6] была анонсирована $\mathfrak G$ -отделимость решетки $l_{\scriptscriptstyle\infty}^{\scriptscriptstyle\omega}$ всех тотально ω -насыщенных формаций.

В данной статье мы докажем, что для любого подгруппового функтора τ решетка l_{∞}^{τ} всех

 τ -замкнутых тотально ω -насыщенных формаций является $\mathfrak G$ -отделимой.

1 Определения и обозначения

Пусть ω – непустое подмножество простых чисел, ω' – дополнение к ω во множестве всех простых чисел. Всякую функцию вида

 $f:\omega\cup\{\omega'\}\to\{\text{формации групп}\}$ называют ω -локальным спутником. Для произвольного ω -локального спутника f полагают $LF_{\omega}(f)=\{G\mid G/G_{\omega d}\in f(\omega')\text{ и }G/F_p(G)\in f(p)$

для всех $p \in \omega \cap \pi(G)$ },

где $G_{\omega d}$ — наибольшая нормальная в G подгруппа, у которой каждый композиционный фактор является ωd -группой. Если формация \mathfrak{F} такова, что $\mathfrak{F}=LF_{\omega}(f)$, то говорят, что она ω -локальна, а $f-\omega$ -локальный спутник этой формации. Формацию \mathfrak{F} называют ω -насыщенной, если ей принадлежит всякая группа G с $G/L \in \mathfrak{F}$, где $L \subseteq \mathcal{O}(G) \cap O_{\omega}(G)$. Как известно [1] формация \mathfrak{F} является ω -насыщенной тогда и только тогда, когда она ω -локальна.

Всякую формацию считают 0-кратно ω -насыщенной. При $n \ge 1$ формацию \mathfrak{F} называют n-кратно ω -насыщенной, если $\mathfrak{F} = LF_{\omega}(f)$, где все значения f являются (n-1)-кратно ω -насыщенными формациями. Формацию \mathfrak{F} называют тотально ω -насыщенной, если она n-кратно ω -насыщенна для всех n.

Подгрупповым функтором называют отображение τ сопоставляющее каждой группе G такую систему ее подгрупп $\tau(G)$, что: 1) $G \in \tau(G)$; 2) для любых групп $H \in \tau(A)$ и $T \in \tau(B)$ и любого эпиморфизма $\phi: A \to B$ имеет место $H^{\phi} \in \tau(B)$ и $T^{\phi^{-1}} \in \tau(A)$.

Тотально ω -насыщенную формацию $\mathfrak F$ называют τ -замкнутой, если $\tau(G)\subseteq \mathfrak F$ для любой группы $G\in \mathfrak F$. Через $l_{\omega_{\infty}}^{\tau}$ обозначают множество всех τ -замкнутых тотально ω -насыщенных формаций. Формации из $l_{\omega_{\infty}}^{\tau}$ называют $l_{\omega_{\infty}}^{\tau}$ -формациями. Для любого множества групп $\mathfrak X$ через $l_{\omega_{\infty}}^{\tau}$ обозначают пересечение всех $l_{\omega_{\infty}}^{\tau}$ -формаций, содержащих $\mathfrak X$. Для любых τ -замкнутых тотально ω -насыщенных формаций $\mathfrak M$ и $\mathfrak H$ через $\mathfrak M \vee_{\omega_{\infty}}^{\tau} \mathfrak H$ обозначают пересечение всех тотально ω -насыщенных формаций, содержащих $\mathfrak M \cup \mathfrak H$, τ е. $\mathfrak M \vee_{\omega_{\infty}}^{\tau} \mathfrak H = l_{\omega_{\infty}}^{\tau}$ form($\mathfrak M \cup \mathfrak H$). Относительно операций $\vee_{\omega_{\infty}}^{\tau} \mathfrak H = l_{\omega_{\infty}}^{\tau}$ form($\mathfrak M \cup \mathfrak H$). Отногично упорядоченное по включению, образует полную решетку формаций.

 ω -Локальный спутник все значения которого — $l_{\omega_{\infty}}^{\tau}$ -формации называют $l_{\omega_{\infty}}^{\tau}$ -значным спутником. Для произвольной τ -замкнутой тотально ω -насыщенной формации $\mathfrak F$ через $\mathfrak F_{\omega_{\infty}}^{\tau}$ обозначают ее минимальный внутренний $l_{\omega_{\infty}}^{\tau}$ -значный спутник.

Пусть \mathfrak{X} — произвольная совокупность групп, p — простое число. Тогда полагают

$$\mathfrak{X}(F_p)=\mathrm{form}(G\,/\,F_p(G)\,|\,G\in\mathfrak{X}),$$
если $p\in\pi(\mathfrak{X})$ и $\mathfrak{X}(F_p)=\varnothing$, если $p\notin\pi(\mathfrak{X}).$

Полную решетку формаций θ называют индуктивной, если для любого набора $\{\mathfrak{F}_i \mid i \in I\}$ формаций $\mathfrak{F}_i \in \theta^\omega$ и для всякого набора $\{f_i \mid i \in I\}$ внутренних θ -значных ω -локальных спутников, где $f_i - \omega$ -локальный спутник формации \mathfrak{F}_i , имеет место

$$\vee_{\alpha^{\omega}} (\mathfrak{F}_i \mid i \in I) = LF_{\omega} (\vee_{\theta} (f_i \mid i \in I)).$$

Пусть \mathfrak{X} — некоторый непустой класс групп. Полную решетку формаций θ называют \mathfrak{X} -отделимой, если для любого терма $\nu(x_1,...,x_n)$

сигнатуры $\{ \cap, \vee_{\theta} \}$, любых θ -формаций $\mathfrak{F}_1, ..., \mathfrak{F}_n$ и любой группы $A \in \mathfrak{X} \cap \mathcal{V}(\mathfrak{F}_1, ..., \mathfrak{F}_n)$ найдутся такие \mathfrak{X} -группы $A_1 \in \mathfrak{F}_1, ..., A_n \in \mathfrak{F}_n$, что $A \in \mathcal{V}(\theta \text{form} A_1, ..., \theta \text{form} A_n).$

2 Вспомогательные результаты

Лемма 2.1 [1]. Если $\mathfrak{F} = \theta^{\omega} \text{form}(\mathfrak{X})$ и f- минимальный ω -локальный θ -значный спутник формации \mathfrak{F} , то справедливы следующие утверждения:

- 1) $f(\omega') = \theta \text{form}(G / G_{\omega d} | G \in \mathfrak{X});$
- 2) $f(p) = \theta \text{form}(\mathfrak{X}(F_p))$ для всех $p \in \omega$;
- 3) если $\mathfrak{F}=LF_{\omega}(h)$, спутник h θ -значен u p не-которое фиксированное число из ω , то $\mathfrak{F}=LF_{\omega}(f_1)$, где $f_1(a)=h(a)$ при любом $a\in (\omega\setminus\{p\})\cup\{\omega'\}$ u

$$f_1(p)= heta {
m form}(G\,|\,G\in h(p)\,{\curvearrowright}\, {\mathfrak F},\,O_p(G)=1),$$
 кроме того, $f_1(p)=f(p);$

4) $\mathfrak{F} = LF_{\omega}(h)$, the $h(\omega') = \mathfrak{F}$ u h(p) = f(p) npu scex $p \in \omega$.

Лемма 2.2 [1]. Пусть формация $\mathfrak{F}=\mathfrak{M}\mathfrak{H},$ где $\mathfrak{H}=LF_{\omega}(h), \quad \mathfrak{M}=LF_{\omega}(m)$ и спутники h и m являются внутренними. Тогда формация $\mathfrak{F}=\omega$ -ло-кальна и $\mathfrak{F}=LF_{\omega}(f),$ где $f(\omega')=\mathfrak{F}$ и

$$f(p) = egin{cases} m(p)\mathfrak{H}, & \text{если } p \in \pi(\mathfrak{M}) \cap \omega, \\ h(p), & \text{если } p \in \omega \setminus \pi(\mathfrak{M}). \end{cases}$$

Лемма 2.3 [7]. Пусть \mathfrak{M} — непустая наследственная формация, \mathfrak{F} — непустая τ -замкнутая формация. Тогда \mathfrak{MF} — τ -замкнутая формация.

Лемма 2.4 [8]. Всякая частичная алгебра формаций и всякая частичная алгебра классов Фиттинга, содержащая все классы Локетта, являются индуктивными решетками.

Лемма 2.5 [2, с. 162]. Пусть θ — индуктивная решетка формаций, $\upsilon(x_1,...,x_m)$ — терм сигнатуры $\{\cap,\vee_{\theta^i}\}$, f_i — внутренний θ -значный спутник формации \mathfrak{F}_i , i=1,...,m. Тогда

$$\upsilon(\mathfrak{F}_1,...,\mathfrak{F}_m) = LF(\overline{\upsilon}(f_1,...,f_m)).$$

Лемма 2.6 [1]. Если $\mathfrak{F}=LF_{\omega}(f)$ и $G/O_p(G)\in \mathfrak{F}\cap f(p)$ для некоторого $p\in \omega$, то $G\in \mathfrak{F}$.

Лемма 2.7 [2]. Решетка l_n^{τ} \mathfrak{G} -отделима, а решетка разрешимых тотально насыщенных формаций \mathfrak{S} -отделима.

Лемма 2.8 [2, с. 152]. Пусть $N_1 \times ... \times N_{i-1} \times ... \times N_{i+1} \times ... \times N_k = Soc(G)$, где k > 1 и G — группа с $O_p(G) = 1$. Пусть M_i — наибольшая нормальная в G группа, содержащая $N_1 \times ... \times N_{i-1} \times N_{i+1} \times ... \times N_k$, но не содержащая N_i . Тогда справедливы следующие утверждения:

1) для любого $i \in \{1,...,k\}$ факторгруппа G/M_i монолитична и ее монолит N_iM_i/M_i G-изоморфен N_i и $O_p(G/M_i)=1;$

2)
$$M_1 \cap ... \cap M_k = 1$$
.

3 Основной результат

Лемма 3.1. Пусть $\mathfrak{F} = l_{\omega_{\infty}}^{\tau}$ form(\mathfrak{X}), где \mathfrak{X} – непустой класс групп. Тогда если f – минимальный $l_{\omega_{\infty}}^{\tau}$ -значный спутник формации \mathfrak{F} , то справедливы следующие утверждения:

1)
$$f(\omega') = l_{\omega}^{\tau} \text{ form}(G / G_{\omega d} \mid G \in \mathfrak{X});$$

2)
$$f(p) = l_{\omega_n}^{\tau} \text{ form}(\mathfrak{X}(F_p))$$
 для всех $p \in \omega$;

3) если h – произвольный $l_{\omega_{\infty}}^{\tau}$ -значный спутник формации \mathfrak{F} и p – некоторое фиксированное число из ω , то $\mathfrak{F} = LF_{\omega}(f_1)$, где $f_1(a) = h(a)$ для всех $a \in (\omega \setminus \{p\}) \cup \{\omega'\}$,

$$f_1(p)=l_{\omega_{\infty}}^{\tau}$$
 form $(G\,|\,G\in h(p)\cap \mathfrak{F},\,O_p(G)=1),$ кроме того, $f_1(p)=f(p).$

Доказательство. Утверждение леммы 3.1 является следствием леммы 2.1, поскольку $l_{\omega_{\infty}}^{\tau}$ образует полную решетку формаций и, очевидно, $(l_{\omega_{\infty}}^{\tau})^{\omega} = l_{\omega_{\infty}}^{\tau}$.

Лемма 3.2 [3]. Пусть \mathfrak{F} — непустая τ -зам-кнутая формация, π — такое множество простых чисел, что $\pi(\mathfrak{F}) \cap \omega \subseteq \pi$. Тогда произведение $\mathfrak{S}_{\pi}\mathfrak{F}$ является τ -замкнутой тотально ω -насыщенной формацией.

Доказательство. Покажем прежде, что формация $\mathfrak{S}_{\pi}\mathfrak{F}$ является тотально ω -насыщенной. Пусть $\mathfrak{M} = \mathfrak{S}_{\pi}\mathfrak{F}$ и $G/L \in \mathfrak{M}$, где $L \subseteq \Phi(G) \cap O_{\omega}(G)$. Поскольку $\pi(G/\Phi(G)) = \pi(G)$, то $\pi(G/L) = \pi(G)$ и $\pi(L) \subseteq \pi(G/L) \cap \omega \subseteq \pi(\mathfrak{M}) \cap \omega$. Понятно, что $\pi(\mathfrak{M}) = \pi \cup \pi(\mathfrak{F})$. Поэтому, а также ввиду условия $\pi(\mathfrak{F}) \cap \omega \subseteq \pi$, имеем

$$\pi(\mathfrak{M}) \cap \omega = (\pi \cup \pi(\mathfrak{F})) \cap \omega =$$
$$= (\pi \cap \omega) \cup (\pi(\mathfrak{F}) \cap \omega) = \pi \cap \omega.$$

Следовательно, $\pi(L)\subseteq\pi$. Значит, $G^{\mathfrak{M}}\in\mathfrak{N}_{\pi}$. Но тогда $G\in\mathfrak{N}_{\pi}\mathfrak{M}$. Однако, $\mathfrak{N}_{\pi}\mathfrak{M}=\mathfrak{N}_{\pi}(\mathfrak{S}_{\pi}\mathfrak{F})=$ $=\mathfrak{S}_{\pi}\mathfrak{F}=\mathfrak{M}$. Поэтому $G\in\mathfrak{M}$ и $\mathfrak{M}-\omega$ -насыщенная формация. Так как \mathfrak{N}_{π} — тотально насыщенная формация, то она является тотально ω -насыщенной формацией. Согласно лемме 3.1 формация \mathfrak{N}_{π} имеет такой ω -локальный спутник t, что $t(\omega')=\mathfrak{N}_{\pi}, \quad t(p)=(1)$ при $p\in\omega\cap\pi$ и $t(p)=\varnothing$ при $p\in\omega\setminus\pi$.

Поскольку $\mathfrak{M}=\mathfrak{N}_{\pi}\mathfrak{M}$, то по лемме 2.2 формация \mathfrak{M} имеет такой ω -локальный спутник m,

что $m(\omega') = \mathfrak{M}$ и $m(p) = t(p)\mathfrak{M} = (1)\mathfrak{M} = \mathfrak{M}$ при $p \in \omega \cap \pi$ и $m(p) = \emptyset$ при $p \in \omega \setminus \pi$. Поэтому $\mathfrak{M} - n$ -кратно ω -насыщеная формация для любого натурального n. Следовательно, \mathfrak{M} — тотально ω -насыщенная формация. τ -Замкнутость формации $\mathfrak{S}_{\pi}\mathfrak{F}$ получаем, применяя лемму $2.3.\square$

Лемма 3.3. Пусть $\mathfrak{F}_i \in l^{\tau}_{\omega_{\infty}}$, где $i \in I$. Тогда $f = \vee_{\omega_{\infty}}^{\tau} (\mathfrak{F}_{i\omega_{\infty}}^{\tau} \mid i \in I)$ — минимальный $l^{\tau}_{\omega_{\infty}}$ -значный спутник формации $\mathfrak{F} = \vee_{\omega}^{\tau} (\mathfrak{F}_i \mid i \in I)$.

 \mathcal{L} оказательство. Пусть $\mathfrak{X}=\bigcup_{i\in I}\mathfrak{F}_i$. Тогда по лемме 3.1 имеем

$$\mathfrak{F}_{\omega_{\infty}}^{\tau}\left(\omega'
ight)=l_{\omega_{\infty}}^{ au}\,\,\mathrm{form}(G\,/\,G_{\omega d}\mid G\in\mathfrak{X})$$
 и

$$\mathfrak{F}_{\omega_{x}}^{\tau}(p) = l_{\omega_{x}}^{\tau} \text{ form}(\mathfrak{X}(F_{p}))$$
 для всех $p \in \omega$.

Покажем, что $f(a)=\mathfrak{F}_{\omega_x}^{\tau}(a)$ при любом $a\in\omega\cup\{\omega'\}$. Пусть $p\in\pi(\mathfrak{F})\cap\omega$. Тогда

$$\mathfrak{F}_{\omega_{\infty}}^{\tau}(p) = l_{\omega_{\infty}}^{\tau} \text{ form}(G / F_{p}(G) | G \in \bigcup_{i \in I} \mathfrak{F}_{i}) =$$

$$= l_{\omega_{\infty}}^{\tau} \text{ form}(\bigcup_{i \in I} l_{\omega_{\infty}}^{\tau} \text{ form}(G / F_{p}(G) | G \in \mathfrak{F}_{i})) =$$

$$=l_{\omega_{\infty}}^{\tau} \text{ form}(\bigcup_{i \in I} \mathfrak{F}_{i\omega_{\infty}}^{\tau}(p)) = f(p).$$

Пусть теперь $p \in \omega \setminus \pi(\mathfrak{F})$. Тогда $\mathfrak{F}_{\omega_x}^{\tau}(p) = \varnothing$. Кроме того, поскольку $\mathfrak{F}_i \subseteq \mathfrak{F}$, то для любого $i \in I$ имеем $p \notin \pi(\mathfrak{F}_i)$. Поэтому $\mathfrak{F}_{i\omega_x}^{\tau}(p) = \varnothing$. Следовательно, $f(p) = \varnothing$.

Покажем теперь, что $\mathfrak{F}_{\omega_{\infty}}^{\tau}(\omega')=f(\omega')$. Действительно,

$$\begin{split} F_{\omega_{\infty}}^{\tau}(\omega') &= l_{\omega_{\infty}}^{\tau} \text{ form}(G / G_{\omega d} \mid G \in \bigcup_{i \in I} \mathfrak{F}_{i}) = \\ &= l_{\omega_{\infty}}^{\tau} \text{ form}(\bigcup_{i \in I} l_{\omega_{\infty}}^{\tau} \text{ form}(G / G_{\omega d} \mid G \in \mathfrak{F}_{i})) = \\ &= l_{\omega_{\infty}}^{\tau} \text{ form}(\bigcup_{i \in I} \mathfrak{F}_{i\omega_{\infty}}^{\tau}(\omega')) = f(\omega'). \end{split}$$

Таким образом,
$$\mathfrak{F}_{\omega_{x}}^{\tau} = f$$
.

Лемма 3.4. Решетка $l_{\omega_{\infty}}^{\tau}$ всех τ -замкнутых тотально ω -насыщенных формаций является частичной алгеброй формаций.

Доказательство. Пусть p — произвольное простое число, \mathfrak{H} — τ -замкнутая тотально ω -насыщенная формация. По лемме 2.3 формация $\mathfrak{M} = \mathfrak{N}_p \mathfrak{H}$ также является τ -замкнутой формацией. Покажем, что формация \mathfrak{M} является тотально ω -насыщенной.

Пусть $p \in \omega$. Тогда согласно лемме 3.1 формация \mathfrak{N}_p имеет такой внутренний ω -локальный спутник m, что m(p)=(1), $m(\omega')=(1)$ и $m(q)=\varnothing$ для всех $q\in\omega\setminus\{p\}$. Ввиду леммы 2.2 формация \mathfrak{M} имеет ω -локальный спутник f, удовлетворяющий условиям: $f(p)=\mathfrak{H}$, $f(\omega')=\mathfrak{M}$ и f(q)=h(q) для любого $q\in\omega\setminus\{p\}$. Поскольку

 $\mathfrak{H} \in l_{\omega_{\infty}}^{\tau}$, то \mathfrak{M} является n-кратно ω -насыщенной для любого натурального n. Следовательно, \mathfrak{M} — тотально ω -насыщенная формация.

Пусть теперь $p \notin \omega$. По лемме 3.1 формация \mathfrak{N}_p имеет такой ω -локальный спутник m, что $m(q)=\varnothing$ для всех $q\in\omega$ и $m(\omega')=\mathfrak{N}_p$. Тогда, согласно лемме 2.2 формация \mathfrak{M} имеет ω -локальный спутник f, такой, что f(q)=h(q) для любого $q\in\omega$ и $f(\omega')=\mathfrak{M}$. Следовательно, \mathfrak{M} – тотально ω -насыщенная формация.

Из лемм 2.4 и 3.4 вытекает

Лемма 3.5. Решетка l_{ω}^{τ} индуктивна.

Из лемм 2.5 и 3.5 следует

Лемма 3.6. Пусть $\upsilon(x_1,...,x_n)$ — терм сигнатуры $\{\cap,\vee_{\omega_\infty}^{\tau}\}$, f_i — внутренний $l_{\omega_\infty}^{\tau}$ -значный спутник формации \mathfrak{F}_i , i=1,...,n. Тогда

$$\upsilon(\mathfrak{F}_1,...,\mathfrak{F}_n) = LF_{\omega}(\upsilon(f_1,...,f_n)).$$

Лемма 3.7. Пусть $\wp(x_1,...,x_n)$ — терм сигнатуры $\{ \cap, \vee_{\omega_\infty}^{\tau} \}$. Тогда для любых τ -замкнутых тотально ω -насыщенных формаций $\mathfrak{F}_1,...,\mathfrak{F}_n$ и всякого непустого подмножества простых чисел $\pi \subseteq \omega$ имеет место равенство

$$\upsilon(\mathfrak{N}_{\pi}\mathfrak{F}_{1},...,\mathfrak{N}_{\pi}\mathfrak{F}_{n})=\mathfrak{N}_{\pi}\upsilon(\mathfrak{F}_{1},...,\mathfrak{F}_{n}).$$

 \mathcal{L} оказательство. Проведем индукцию по числу t вхождений символов $\{\cap, \vee_{\omega_{\infty}}^{\tau}\}$ в терм υ . Утверждение леммы очевидно, если t=0. Пусть t=1, $\mathcal{L}_1=\mathfrak{N}_{\pi}(\mathfrak{M}\vee_{\omega_{\infty}}^{\tau}\mathfrak{H})$, $\mathcal{L}_2=\mathfrak{N}_{\pi}\mathfrak{M}\vee_{\omega_{\infty}}^{\tau}\mathfrak{N}_{\pi}\mathfrak{H}$. Поскольку \mathfrak{M} и \mathfrak{H} содержатся в $\mathfrak{M}\vee_{\omega_{\infty}}^{\tau}\mathfrak{H}$, то $\mathfrak{N}_{\pi}\mathfrak{M}\cup\mathfrak{N}_{\pi}\mathfrak{H}\subseteq\mathfrak{N}_{\pi}(\mathfrak{M}\vee_{\omega_{\infty}}^{\tau}\mathfrak{H})=\mathcal{L}_1$, откуда следует $\mathcal{L}_2=\mathfrak{N}_{\pi}\mathfrak{M}\vee_{\omega_{\infty}}^{\tau}\mathfrak{N}_{\pi}\mathfrak{H}\subseteq\mathcal{L}_1$.

Допустим, что $\mathcal{L}_1 \setminus \mathcal{L}_2 \neq \emptyset$ и пусть A — группа минимального порядка из $\mathcal{L}_1 \setminus \mathcal{L}_2$. Тогда A — τ -минимальная монолитическая группа и $P = \operatorname{Soc}(A) = A^{\mathcal{L}_2}$.

Если P — неабелева группа или абелева π' -группа, то $A\in\mathfrak{M}\vee_{\omega_x}^{\tau}\mathfrak{H}\subseteq\mathcal{L}_2$. Противоречие. Значит, P — абелева p -группа, где $p\in\pi$. Так как \mathcal{L}_2 — ω -насыщенная формация и $p\in\omega$, то $P\nsubseteq\Phi(A)$. Поэтому $P=F_p(A)=O_p(A)$.

Согласно лемме 3.1 формация \mathfrak{N}_{π} имеет такой внутренний ω -локальный спутник n, что n(q)=(1) для любого $q\in\pi$. Тогда по лемме 2.2 формации $\mathfrak{N}_{\pi}\mathfrak{M}$, $\mathfrak{N}_{\pi}\mathfrak{H}$ и \mathcal{L}_{1} имеют такие ω -локальные спутники m, h и l_{1} соответственно, что $m(q)=\mathfrak{M}$, $h(q)=\mathfrak{H}$ и $l_{1}(q)=\mathfrak{M}\vee_{\omega_{x}}^{\tau}\mathfrak{H}$ для всякого $q\in\pi$. Ввиду леммы 3.5 формация \mathcal{L}_{2} имеет

такой $l_{\omega_{\infty}}^{\tau}$ -значный ω -локальный спутник l_2 , что $l_2(q)=m(q)\vee_{\omega_{\infty}}^{\tau}h(q)=\mathfrak{M}\vee_{\omega_{\infty}}^{\tau}\mathfrak{H},$ где $q\in\pi$. Следовательно, $l_1(q)=l_2(q)$ для любого $q\in\pi$. Поскольку $A\in\mathcal{L}_1$ и $p\in\pi$, то $A/O_p(A)==A/F_p(A)\in l_1(p)$. Значит, $A/O_p(A)\in l_2(p)\subseteq\mathcal{L}_2$. Но тогда ввиду леммы 2.6 имеем $A\in\mathcal{L}_2$. Получили противоречие.

Положим теперь $\mathfrak{X}_1=\mathfrak{N}_\pi(\mathfrak{M}\cap\mathfrak{H})$ и $\mathfrak{X}_2=\mathfrak{N}_\pi\mathfrak{M}\cap\mathfrak{N}_\pi\mathfrak{H}$. Так как $\mathfrak{M}\cap\mathfrak{H}\subseteq\mathfrak{M}$ и $\mathfrak{M}\cap\mathfrak{H}\subseteq\mathfrak{H}$, то $\mathfrak{X}_1=\mathfrak{N}_\pi(\mathfrak{M}\cap\mathfrak{H})\subseteq\mathfrak{N}_\pi\mathfrak{M}$ и $\mathfrak{X}_1=\mathfrak{N}_\pi(\mathfrak{M}\cap\mathfrak{H})\subseteq\mathfrak{N}_\pi\mathfrak{H}$, значит, $\mathfrak{X}_1\subseteq\mathfrak{X}_2$.

Допустим теперь, что $\mathfrak{X}_2 \setminus \mathfrak{X}_1 \neq \emptyset$ и B — группа минимального порядка из $\mathfrak{X}_2 \setminus \mathfrak{X}_1$. Тогда B — τ -минимальная монолитическая группа и $P = \operatorname{Soc}(B) = B^{\mathfrak{X}_1}$.

Если P — неабелева группа или абелева π' -группа, то из $B \in \mathfrak{N}_\pi \mathfrak{M} \cap \mathfrak{N}_\pi \mathfrak{H}$ следует, $B \in \mathfrak{M} \cap \mathfrak{H}$. Поэтому $B \in \mathfrak{X}_1$. Противоречие. Значит, P — абелева p-группа, где $p \in \pi$. Поскольку \mathfrak{X}_1 — ω -насыщенная формация и $p \in \pi \subseteq \omega$, то $P \nsubseteq \Phi(A)$. Поэтому $P = F_p(B)$ и B = [P]H для некоторой максимальной подгруппы H из B. Так как $B \in \mathfrak{X}_2 = \mathfrak{N}_\pi \mathfrak{M} \cap \mathfrak{N}_\pi \mathfrak{H}$ и $P = \operatorname{Soc}(B)$, то $H \in \mathfrak{M} \cap \mathfrak{H}$. Отсюда $B^{\mathfrak{M} \cap \mathfrak{H}} \in \mathfrak{M}_\pi$. Тогда $B \in \mathfrak{N}_\pi (\mathfrak{M} \cap \mathfrak{H}) = \mathfrak{X}_1$. Получили противоречие. Значит, $\mathfrak{X}_1 = \mathfrak{X}_2$.

Пусть теперь t>1 и предположим, что лемма верна для всякого терма с меньшим числом символов из $\{\vee_{\omega_x}^{\tau}, \cap\}$. Пусть υ имеет вид

$$v_1(x_{i_1},...,x_{i_r})\Delta v_2(x_{j_1},...,x_{j_s}),$$

где $\Delta \in \{\vee_{\infty_x}^{\tau}, \cap\}$ и $\{x_{i_1},...,x_{i_r}\} \cup \{x_{j_1},...,x_{j_s}\} = \{x_1,...,x_n\}$. По индуктивному предположению для термов $\upsilon_1(x_{i_1},...,x_{i_r})$ и $\upsilon_2(x_{j_1},...,x_{j_s})$ утверждение леммы верно. Поэтому

$$\begin{split} \upsilon_{1}(\mathfrak{N}_{\pi}\mathfrak{F}_{i_{1}},...,\mathfrak{N}_{\pi}\mathfrak{F}_{i_{r}}) &= \mathfrak{N}_{\pi}\upsilon_{1}(\mathfrak{F}_{i_{1}},...,\mathfrak{F}_{i_{r}}),\\ \upsilon_{2}(\mathfrak{N}_{\pi}\mathfrak{F}_{i_{1}},...,\mathfrak{N}_{\pi}\mathfrak{F}_{i_{r}}) &= \mathfrak{N}_{\pi}\upsilon_{2}(\mathfrak{F}_{i_{1}},...,\mathfrak{F}_{i_{r}}). \end{split}$$

Значит,

$$\begin{split} \upsilon(\mathfrak{N}_{\pi}\mathfrak{F}_{1},...,\mathfrak{N}_{\pi}\mathfrak{F}_{n}) &= \\ &= \upsilon_{1}(\mathfrak{N}_{\pi}\mathfrak{F}_{i_{1}},...,\mathfrak{N}_{\pi}\mathfrak{F}_{i_{r}})\Delta\upsilon_{2}(\mathfrak{N}_{\pi}\mathfrak{F}_{j_{1}},...,\mathfrak{N}_{\pi}\mathfrak{F}_{j_{s}}) = \\ &= \mathfrak{N}_{\pi}\upsilon_{1}(\mathfrak{F}_{i_{1}},...,\mathfrak{F}_{i_{r}})\Delta\mathfrak{N}_{\pi}\upsilon_{2}(\mathfrak{F}_{j_{1}},...,\mathfrak{F}_{j_{s}}) = \\ &= \mathfrak{N}_{\pi}(\upsilon_{1}(\mathfrak{F}_{i_{1}},...,\mathfrak{F}_{i_{r}})\Delta\upsilon_{2}(\mathfrak{F}_{j_{1}},...,\mathfrak{F}_{j_{s}})) = \\ &= \mathfrak{N}_{\pi}\upsilon(\mathfrak{F}_{1},...,\mathfrak{F}_{n}). \end{split}$$

Лемма 3.8. Пусть $\upsilon(x_1,...,x_n)$ — терм сигнатуры $\{\cap,\vee_{\omega_{\omega}}^{\tau}\},~~\mathfrak{X}_i~~u~~\mathfrak{F}_i$ — такие $l_{\omega_{\omega}}^{\tau}$ -формации, что $\mathfrak{X}_i\subseteq\mathfrak{F}_i,~~i=1,...,n.$ Тогда

$$\upsilon(\mathfrak{X}_1,...,\mathfrak{X}_n) \subseteq \upsilon(\mathfrak{F}_1,...,\mathfrak{F}_n).$$

Доказательство. Проведем индукцию по числу t вхождений символов $\{\cap, \vee_{\omega_{\infty}}^{\tau}\}$ в терм υ . Утверждение леммы очевидно, если t=0 или 1.

Пусть t>1 и лемма верна для всякого терма с меньшим числом символов из $\{\cap, \vee_{\omega_x}^{\tau}\}$. Пусть терм υ имеет вид $\upsilon_1(x_{i_1},...,x_{i_r})\Delta\upsilon_2(x_{j_1},...,x_{j_s})$, где $\Delta\in\{\cap,\vee_{\omega_x}^{\tau}\}$ и $\{x_{i_1},...,x_{i_r}\}\cup\{x_{j_1},...,x_{j_s}\}=\{x_1,...,x_n\}$. Положим

$$\mathfrak{M}_{1} = \upsilon_{1}(\mathfrak{X}_{i_{1}},...,\mathfrak{X}_{i_{r}}), \, \mathfrak{M}_{2} = \upsilon_{2}(\mathfrak{X}_{j_{1}},...,\mathfrak{X}_{j_{s}}),$$

 $\mathfrak{H}_{1} = \upsilon_{1}(\mathfrak{F}_{i_{1}},...,\mathfrak{F}_{i_{r}}), \, \mathfrak{H}_{2} = \upsilon_{2}(\mathfrak{F}_{i_{1}},...,\mathfrak{F}_{i_{r}}).$

По индуктивному предположению для термов $\upsilon_1(x_{i_1},...,x_{i_r})$ и $\upsilon_2(x_{j_1},...,x_{j_s})$ утверждение леммы верно, тогда $\mathfrak{M}_i\subseteq\mathfrak{H}_i$, i=1,2. Если $\Delta=\cap$, то $\mathfrak{M}_1\cap\mathfrak{M}_2\subseteq\mathfrak{H}_1\cap\mathfrak{H}_2$. Аналогично, если $\Delta=\vee_{\omega_\infty}^{\tau}$, то $\mathfrak{M}_1\vee_{\omega_\infty}^{\tau}\mathfrak{M}_2\subseteq\mathfrak{H}_1\vee_{\omega_\infty}^{\tau}\mathfrak{H}_2$. Поэтому $\mathfrak{M}_1\Delta\mathfrak{M}_2\subseteq\mathfrak{H}_1\Delta\mathfrak{H}_2$. Значит, выполняются включения

$$\begin{split} &\upsilon_{1}(\mathfrak{X}_{i_{1}},...,\mathfrak{X}_{i_{r}})\Delta\upsilon_{2}(\mathfrak{X}_{j_{1}},...,\mathfrak{X}_{j_{s}}) \subseteq \\ &\subseteq \upsilon_{1}(\mathfrak{F}_{i_{1}},...,\mathfrak{F}_{i_{r}})\Delta\upsilon_{2}(\mathfrak{F}_{j_{1}},...,\mathfrak{F}_{j_{s}}), \\ &\upsilon(\mathfrak{X}_{1},...,\mathfrak{X}_{n}) \subseteq \upsilon(\mathfrak{F}_{1},...,\mathfrak{F}_{n}). \end{split}$$

Теорема 3.9. Решетка $l_{\omega_{\infty}}^{\tau}$ всех τ -замкнутых тотально ω -насыщенных формаций является $\mathfrak G$ -отделимой.

Доказательство. Предположим противное, и пусть группа G — контрпример минимального порядка. Тогда найдутся терм $\upsilon(x_1,...,x_n)$ сигнатуры $\{\cap,\vee_{\infty_x}^{\tau}\}$ и $l_{\infty_x}^{\tau}$ -формации $\mathfrak{F}_1,...,\mathfrak{F}_n$, такие, что $G\in \upsilon(\mathfrak{F}_1,...,\mathfrak{F}_n)$, но нет групп $A_1,...,A_n$ таких, что $A_1\in\mathfrak{F}_1,...,A_n\in\mathfrak{F}_n$ и

$$G \in \upsilon(l_{\omega}^{\tau} \text{ form } A_1, ..., l_{\omega}^{\tau} \text{ form } A_n).$$

Заметим, что $\Phi(G) \cap O_{\omega}(G) = 1$. Действительно, если $\Phi(G) \cap O_{\omega}(G) \neq 1$, то в силу индуктивного предположения для группы $G/(\Phi(G) \cap O_{\omega}(G))$ утверждение теоремы верно. Поскольку $G \in \wp(\mathfrak{F}_1,...,\mathfrak{F}_n)$ и $\wp(\mathfrak{F}_1,...,\mathfrak{F}_n)$ — формация, то $G/(\Phi(G) \cap O_{\omega}(G)) \in \wp(\mathfrak{F}_1,...,\mathfrak{F}_n)$. Значит, найдутся такие группы $B_1 \in \mathfrak{F}_1,...,B_n \in \mathfrak{F}_n$, что $G/(\Phi(G) \cap O_{\omega}(G)) \in \wp(I_{\omega}^r$ form $B_1,...,I_{\omega_n}^r$ form B_n).

В силу ω -насыщенности формации

$$\upsilon(l_{\omega_{-}}^{\tau} \text{ form } B_1, ..., l_{\omega_{-}}^{\tau} \text{ form } B_n)$$

имеет место $G \in \upsilon(l_{\omega_n}^{\tau} \text{ form } B_1, ..., l_{\omega_n}^{\tau} \text{ form } B_n).$

Противоречие. Таким образом, $\Phi(G) \cap O_{\omega}(G) = 1$.

Пусть $\mathfrak{M} = \upsilon(\mathfrak{F}_1,...,\mathfrak{F}_n)$. Покажем, что утверждение теоремы верно, если в терм υ входит всего один символ. Действительно, если $G \in \mathfrak{F}_1 \cap \mathfrak{F}_2$, то $G \in \mathfrak{F}_i$, i=1,2. Значит,

 $G \in l_{\omega}^{\tau}$ form $G \cap l_{\omega_{\infty}}^{\tau}$ form G.

Пусть $G \in \mathfrak{F}_1 \vee_{\infty_\infty}^{\tau} \mathfrak{F}_2 = \mathfrak{M}$. Предположим, что G – монолитическая группа.

Пусть $P = \operatorname{Soc}(G)$ — неабелева группа или абелева ω' -группа. Тогда ввиду леммы 3.2 формация $\mathfrak{S}_{\pi} \tau$ form $(\mathfrak{F}_1 \cup \mathfrak{F}_2) \in I_{\omega_x}^{\tau}$ и $G \in \mathfrak{F}_1 \vee_{\omega_x}^{\tau} \mathfrak{F}_2 \subseteq \subseteq \mathfrak{S}_{\pi} \tau$ form $(\mathfrak{F}_1 \cup \mathfrak{F}_2)$. Из последнего включения следует, что $G \in \tau$ form $(\mathfrak{F}_1 \cup \mathfrak{F}_2) = \mathfrak{F}_1 \vee^{\tau} \mathfrak{F}_2$. По лемме 2.7 найдутся такие группы $A_1 \in \mathfrak{F}_1$ и $A_2 \in \mathfrak{F}_2$, что $G \in \tau$ form $A_1 \vee^{\tau} \tau$ form $A_2 \subseteq I_{\omega}^{\tau}$ form $A_1 \vee_{\omega}^{\tau} I_{\omega}^{\tau}$ form A_2 .

$$G/F_p(G) \in l_{\omega_n}^{\tau} \text{ form } D_1 \vee_{\omega_n}^{\tau} l_{\omega_n}^{\tau} \text{ form } D_2.$$

Пусть $C_i = D_i / O_p(D_i), i \in 1, 2$. Тогда

$$l_{\omega_n}^{\tau}$$
 form $D_i \subseteq \mathfrak{N}_p l_{\omega_n}^{\tau}$ form $C_i, i \in 1, 2, и$

$$l_{\omega_{\alpha}}^{\tau}$$
 form $D_1 \vee_{\omega_{\alpha}}^{\tau} l_{\omega_{\alpha}}^{\tau}$ form $D_2 \subseteq$

$$\subseteq \mathfrak{N}_{p}l_{\omega}^{\tau}$$
 form $C_{1}\vee_{\omega}^{\tau}$ $\mathfrak{N}_{p}l_{\omega}^{\tau}$ form C_{2} .

По лемме 3.7 имеет место равенство $\mathfrak{N}_p I_{\omega_n}^{\tau}$ form $C_1 \vee_{\omega_n}^{\tau} \mathfrak{N}_p I_{\omega_n}^{\tau}$ form $C_2 =$

$$=\mathfrak{N}_{n}(l_{\omega}^{\tau} \text{ form } C_{1} \vee_{\omega}^{\tau} l_{\omega}^{\tau} \text{ form } C_{2}).$$

Значит,

 $G/P=G/F_p(G)\in\mathfrak{N}_p(l^{\tau}_{\omega_{\infty}}\ \mathrm{form}\ C_1\vee^{\tau}_{\omega_{\infty}}\ l^{\tau}_{\omega_{\infty}}\ \mathrm{form}\ C_2).$ Так как $P=O_p(G),\ \mathrm{To}\ O_p(G/P)=1.$ Поэтому $G/P\in l^{\tau}_{\omega_{\infty}}\ \mathrm{form}\ C_1\vee^{\tau}_{\omega_{\infty}}\ l^{\tau}_{\omega_{\infty}}\ \mathrm{form}\ C_2.$

Пусть $R_i = Z_p \wr C_i = [K_i]C_i$, где Z_p – группа порядка p, K_i – база сплетения групп Z_p и C_i , i=1,2. Понятно, что $O_p(R_i) = F_p(R_i) = K_i$. Так как $R_i / O_p(R_i) \cong C_i \in l^\tau_{\omega_\infty}$ form $D_i \subseteq \mathfrak{F}^\tau_{i\omega_\infty}(p)$, в силу леммы 2.6 имеем $R_i \in \mathfrak{F}_i$. Пусть далее $\mathfrak{X}_i = l^\tau_{\omega_\infty}$ form R_i , i=1,2 и $\mathcal{L} = \mathfrak{X}_1 \vee_{\omega_\infty}^\tau \mathfrak{X}_2$. По лемме 3.3 $\mathcal{L}^\tau_{\omega_p} = \mathfrak{X}^\tau_{1\omega_p} \vee_{\omega_p}^\tau \mathfrak{X}^\tau_{2\omega_p}$. Следовательно,

$$\mathcal{L}_{\omega_{\infty}}^{\tau}(p) = \mathfrak{X}_{1\omega_{\infty}}^{\tau}(p) \vee_{\omega_{\infty}}^{\tau} \mathfrak{X}_{2\omega_{\infty}}^{\tau}(p) =$$

$$= l_{\omega_{\infty}}^{\tau} \text{ form}(R_{1} / F_{p}(R_{1})) \vee_{\omega_{\infty}}^{\tau} l_{\omega_{\infty}}^{\tau} \text{ form}(R_{2} / F_{p}(R_{2})) =$$

 $= l_{\omega_{\infty}}^{\tau} \operatorname{form}(R_1 / F_p(R_1)) \vee_{\omega_{\infty}}^{\tau} l_{\omega_{\infty}}^{\tau} \operatorname{form}(R_2 / F_p(R_2)) =$ $= l_{\omega_{\infty}}^{\tau} \operatorname{form} C_1 \vee_{\omega_{\infty}}^{\tau} l_{\omega_{\infty}}^{\tau} \operatorname{form} C_2.$

Значит, $G/O_n(G) = G/P \in \mathcal{L}_{\infty}^{\tau}(p)$. В силу леммы 3.2

$$G \in \mathcal{L} = l_{\infty}^{\tau} \text{ form } R_1 \vee_{\infty}^{\tau} l_{\infty}^{\tau} \text{ form } R_2.$$

Пусть теперь G не является монолитической группой и $\mathrm{Soc}(G) = N_1 \times ... \times N_k$, где N_i — минимальная нормальная подгруппа группы G, i=1,...,k $(k \geq 2)$. Обозначим через M_i наибольшую нормальную подгруппу группы G, содержащую $N_1 \times ... \times N_{i-1} \times N_{i+1} \times ... \times N_k$ и не содержащую N_i . В силу леммы 2.8 группа $B_i = G/M_i$ является монолитической и ее монолит $N_i M_i/M_i$ G-изоморфен N_i и $M_1 \cap ... \cap M_k = 1$. Поскольку $B_i \in \mathfrak{M} = \mathfrak{F}_1 \vee_{\omega_\infty}^{\tau} \mathfrak{F}_2$ и $|B_i| < |G|$, то по индукции для группы B_i найдутся такие группы $S_{i1} \in \mathfrak{F}_1$ и $S_{i2} \in \mathfrak{F}_2$, что

 $B_i \in l^{\mathsf{T}}_{\omega_\infty}$ form $S_{i1} \vee_{\omega_\infty}^{\mathsf{T}} l^{\mathsf{T}}_{\omega_\infty}$ form $S_{i2}, i \in I = \{1, 2, ..., k\}.$ Положим $S_1 = S_{11} \times S_{21} \times ... \times S_{k1}$ и $S_2 = S_{12} \times \times S_{22} \times ... \times S_{k2}$. Поскольку $S_{i1} \in \mathfrak{F}_1$ и $S_{i2} \in \mathfrak{F}_2$ при любом $i \in I$, то $S_1 \in \mathfrak{F}_1$ и $S_2 \in \mathfrak{F}_2$. Так как $S_{i1} \in l^{\mathsf{T}}_{\omega_\infty}$ form S_1 и $S_{i2} \in l^{\mathsf{T}}_{\omega_\infty}$ form S_2 для любого $i \in I$, то $l^{\mathsf{T}}_{\omega_\infty}$ form $S_{i1} \subseteq l^{\mathsf{T}}_{\omega_\infty}$ form S_1 и $l^{\mathsf{T}}_{\omega_\infty}$ form $S_2 \subseteq l^{\mathsf{T}}_{\omega_\infty}$ form $S_2 \subseteq l^{\mathsf{T}}_{\omega_\infty}$ form $S_2 \subseteq l^{\mathsf{T}}_{\omega_\infty}$ form $S_2 \subseteq l^{\mathsf{T}}_{\omega_\infty}$ form $S_3 \subseteq l^{\mathsf{T}}_{\omega_\infty}$ form $S_4 \subseteq l^{\mathsf{T}}_{\omega_\infty}$

$$\begin{split} & l_{\omega_{\infty}}^{\tau} \operatorname{form} S_{i1} \vee_{\omega_{\infty}}^{\tau} l_{\omega_{\infty}}^{\tau} \operatorname{form} S_{i2} \subseteq \\ & \subseteq l_{\omega_{\infty}}^{\tau} \operatorname{form} S_{1} \vee_{\omega_{\infty}}^{\tau} l_{\omega_{\infty}}^{\tau} \operatorname{form} S_{2}. \end{split}$$

Из $B_i \in I_{\omega_{\infty}}^{\tau}$ form $S_{i1} \vee_{\omega_{\infty}}^{\tau} I_{\omega_{\infty}}^{\tau}$ form S_{i2} в силу леммы 2.8 вытекает, что $G \in I_{\omega_{\infty}}^{\tau}$ form $S_1 \vee_{\omega_{\infty}}^{\tau} I_{\omega_{\infty}}^{\tau}$ form S_2 как подпрямое произведение групп, изоморфных группам B_1, \dots, B_k . Противоречие.

Таким образом, мы можем считать, что число t вхождений символов из $\{\cap, \vee_{\omega_{\infty}}^{\tau}\}$ в терм $\upsilon(x_1,...,x_n)$ больше 1 и при t-1 утверждение теоремы верно.

Допустим, что группа G монолитична. Пусть сначала $P = \mathrm{Soc}(G)$ — абелева p-группа, где $p \in \omega$. Поскольку $\Phi(G) \cap O_{\omega}(G) = 1$, то $P \nsubseteq \Phi(G)$ и $P = C_G(P) = O_p(G) = F_p(G)$. В силу леммы 3.6 $m = \upsilon(\mathfrak{F}_{1\omega_\infty}^\tau,...,\mathfrak{F}_{n\omega_\infty}^\tau)$ — $l_{\omega_\infty}^\tau$ -значный спутник формации $\mathfrak{M} = \upsilon(\mathfrak{F}_1,...,\mathfrak{F}_n)$. Ввиду того, что $G \in \mathfrak{M}$, из леммы 3.1 вытекает

$$G/P = G/F_p(G) \in m(p) = \upsilon(\mathfrak{F}^{\tau}_{l\omega_{\infty}}(p), ..., \mathfrak{F}^{\tau}_{n\omega_{\infty}}(p)).$$

Так как $|G/F_p(G)| < |G|$, то для группы $G/F_p(G)$ утверждение теоремы верно. Поэтому найдутся такие группы $T_1 \in \mathfrak{F}_{\log_x}^{\tau}(p),...,T_n \in \mathfrak{F}_{\log_x}^{\tau}(p),$ что $G/F_p(G) \in \upsilon(l_{\infty}^{\tau} \text{ form } T_1,...,l_{\infty}^{\tau} \text{ form } T_n).$

Положим $L_i=T_i$ / $O_p(T_i), i=1,...,n$. Тогда $l_{\omega_\infty}^{\tau}$ form $T_i\subseteq\mathfrak{N}_pl_{\omega_\infty}^{\tau}$ form L_i для любого i=1,...,n.

В силу леммы 3.8 справедливо включение $\upsilon(l_{\omega_{\infty}}^{\tau} \text{ form } T_1,...,l_{\omega_{\infty}}^{\tau} \text{ form } T_n) \subseteq$ $\subseteq \upsilon(\mathfrak{N}_p l_{\omega_{\infty}}^{\tau} \text{ form } L_1,...,\mathfrak{N}_p l_{\omega_{\infty}}^{\tau} \text{ form } L_n).$ По лемме 3.7 имеет место равенство $\upsilon(\mathfrak{N}_p l_{\omega_{\infty}}^{\tau} \text{ form } L_1,...,\mathfrak{N}_p l_{\omega_{\infty}}^{\tau} \text{ form } L_n) =$ $= \mathfrak{N}_p \upsilon(l_{\omega_{\infty}}^{\tau} \text{ form } L_1,...,l_{\omega_{\infty}}^{\tau} \text{ form } L_n).$ Значит, $G/P \in \upsilon(\mathfrak{N}_p l_{\omega_{\infty}}^{\tau} \text{ form } L_1,...,\mathfrak{N}_p l_{\omega_{\infty}}^{\tau} \text{ form } L_n).$ Поскольку $P = O_p(G)$, то $O_p(G/P) = 1$ и $G/P \in \upsilon(l_{\omega_{\infty}}^{\tau} \text{ form } L_1,...,l_{\omega_{\infty}}^{\tau} \text{ form } L_n).$

Обозначим через R_i регулярное сплетение $Z_p \wr L_i$ группы Z_p порядка p и группы L_i , i=1,...,n. Тогда $R_i=[K_i]L_i$, где K_i — база сплетения. Имеет место $K_i=F_p(R_i)=O_p(R_i)$. Ввиду того, что $R_i/O_p(R_i)\simeq L_i\in \mathfrak{F}_{i\omega_\infty}^\tau(p)$, по лемме 2.6 имеем $R_i\in \mathfrak{F}_i$. Пусть $\mathfrak{X}_i=l_{\omega_\infty}^\tau$ form R_i , i=1,...,n. Обозначим через \mathcal{L} формацию $\upsilon(\mathfrak{X}_1,...,\mathfrak{X}_n)$. По лемме 3.6 $l=\upsilon(\mathfrak{X}_{1\omega_\infty}^\tau,...,\mathfrak{X}_{n\omega_\infty}^\tau)$ — $l_{\omega_\infty}^\tau$ -значный спутник формации \mathcal{L} . Поскольку $\mathfrak{X}_{i\omega_\infty}^\tau(p)\subseteq \mathfrak{X}_i$, i=1,...,n, то в силу леммы 3.8 имеет место $l(p)=\upsilon(\mathfrak{X}_{1\omega_\infty}^\tau(p),...,\mathfrak{X}_{n\omega_\infty}^\tau(p))\subseteq \upsilon(\mathfrak{X}_1,...,\mathfrak{X}_n)$. Поэтому спутник l является внутренним. Поскольку

$$l(p) = \upsilon(\mathfrak{X}_{l\omega_{\infty}}^{\tau}(p), ..., \mathfrak{X}_{n\omega_{\infty}}^{\tau}(p)) =$$

$$f_{\sigma, \dots, \tau}(P_{\sigma} \mid F_{\sigma}(P_{\sigma})) = l^{\tau} f_{\sigma, \dots, \tau}(P_{\sigma} \mid F_{\sigma}(P_{\sigma}))$$

$$= \upsilon(l_{\omega_{\infty}}^{\tau} \operatorname{form}(R_{1} / F_{p}(R_{1})), ..., l_{\omega_{\infty}}^{\tau} \operatorname{form}(R_{n} / F_{p}(R_{n}))) =$$

$$= \upsilon(l_{\omega_{\infty}}^{\tau} \operatorname{form} L_{1}, ..., l_{\omega_{\infty}}^{\tau} \operatorname{form} L_{n}),$$

то
$$G / O_p(G) = G / P \in l(p)$$
. По лемме 2.6

$$G \in \mathcal{L} = \upsilon(l_{\omega_{\infty}}^{\tau} \text{ form } R_1, ..., l_{\omega_{\infty}}^{\tau} \text{ form } R_n).$$

Противоречие.

Пусть теперь $P = \mathrm{Soc}(G)$ — неабелева группа или абелева ω' -группа и терм υ имеет вид $\upsilon_1(x_i,...,x_i)\Delta\upsilon_2(x_i,...,x_i),$

где
$$\Delta \in \{ \cap, \vee_{\omega}^{\tau} \}$$
 и

$$\{x_{i_1},...,x_{i_r}\}\cup\{x_{i_1},...,x_{i_r}\}=\{x_1,...,x_n\}.$$

Если
$$\Delta = \cap$$
, то $G \in \mathcal{V}_1(\mathfrak{F}_{i_1},...,\mathfrak{F}_{i_r}) \cap \mathcal{V}_2(\mathfrak{F}_{j_1},...,\mathfrak{F}_{j_s}).$

По индуктивному предположению для термов υ_1 и υ_2 утверждение теоремы верно, следовательно, найдугся группы $A_1 \in \mathfrak{F}_i$, ..., $A_r \in \mathfrak{F}_L$ и $B_1 \in \mathfrak{F}_i$, ..., $B_s \in \mathfrak{F}_L$,

$$G \in \upsilon_1(l_{\omega_r}^{\tau} \text{ form} A_1, ..., l_{\omega_r}^{\tau} \text{ form} A_r)$$

и
$$G \in \mathcal{V}_2(l_{\infty}^{\tau} \text{ form} B_1, ..., l_{\infty}^{\tau} \text{ form} B_s).$$

Пусть $\Omega = \{x_{i_1},...,x_{i_r}\} \cap \{x_{j_1},...,x_{j_s}\}$. Положим $R_{i_m} = A_m$, если $x_{i_m} \notin \Omega$, $R_{i_m} = P_{j_k} = A_m \times B_k$, если $x_{i_m} = x_{j_k} \in \Omega$ и $P_{j_k} = B_k$, если $x_{j_k} \notin \Omega$, m = 1,...,r, k = 1,...,s. Ясно, что $R_{i_m} \in \mathfrak{F}_{i_m}$ и $P_{j_k} \in \mathfrak{F}_{j_k}$.

Обозначим через \mathfrak{M}_{i_m} формацию $l_{\omega_\infty}^{\tau}$ form R_{i_m} , а через \mathfrak{M}_{j_k} — формацию $l_{\omega_\infty}^{\tau}$ form P_{j_k} , m=1,...,r, k=1,...,s. Поскольку для любых m=1,...,r, k=1,...,s справедливы включения $l_{\omega_\infty}^{\tau}$ form $A_m \subseteq \mathfrak{M}_{i_m}$ и $l_{\omega_\infty}^{\tau}$ form $B_k \subseteq \mathfrak{M}_{j_k}$, в силу леммы 3.8 имеем:

$$\upsilon_1(l_{\omega_{\infty}}^{\tau} \text{ form } A_1,...,l_{\omega_{\infty}}^{\tau} \text{ form } A_r) \subseteq \upsilon_1(\mathfrak{M}_{i_1},...,\mathfrak{M}_{i_r}),$$
 $\upsilon_2(l_{\omega_{\infty}}^{\tau} \text{ form } B_1,...,l_{\omega_{\infty}}^{\tau} \text{ form } B_s) \subseteq \upsilon_2(\mathfrak{M}_{j_1},...,\mathfrak{M}_{j_s}).$
Следовательно, справедливо равенство

$$G \in \upsilon_1(\mathfrak{M}_{i_1},...,\mathfrak{M}_{i_r}) \cap \upsilon_2(\mathfrak{M}_{j_1},...,\mathfrak{M}_{j_s}) =$$

= $\upsilon(\mathfrak{M}_1,...,\mathfrak{M}_n),$

где \mathfrak{M}_i — однопорожденная τ -замкнутая тотально ω -насыщенная подформация формации $\mathfrak{F}_i, \ i=1,...,n.$

Пусть $\Delta = \vee_{\omega}^{\tau}$. Тогда

$$G \in \mathcal{V}_1(\mathfrak{F}_{i_1},...,\mathfrak{F}_{i_r}) \vee_{\omega_{\infty}}^{\tau} \mathcal{V}_2(\mathfrak{F}_{i_1},...,\mathfrak{F}_{i_s}).$$

Положим $\mathfrak{H}_1=\mathfrak{V}_1(\mathfrak{F}_{i_1},...,\mathfrak{F}_{i_r})$ и $\mathfrak{H}_2=\mathfrak{V}_2(\mathfrak{F}_{j_1},...,\mathfrak{F}_{j_s}).$ Тогда $G\in\mathfrak{H}_1\vee_{\omega_x}^{\tau}\mathfrak{H}_2$ и по доказанному существуют такие группы $H_1\in\mathfrak{H}_1$ и $H_2\in\mathfrak{H}_2$, что

$$G \in l_{\omega_n}^{\tau}$$
 form $H_1 \vee_{\omega_n}^{\tau} l_{\omega_n}^{\tau}$ form H_2 .

По индуктивному предположению найдутся такие группы $A_{\rm l}\in \mathfrak{F}_{i_{\rm l}},...,A_{r}\in \mathfrak{F}_{i_{r}}$ и $B_{\rm l}\in \mathfrak{F}_{j_{\rm l}},...,B_{s}\in F_{j_{\rm r}}$, что

$$H_1 \in \upsilon_1(l_{\omega_{\infty}}^{\tau} \text{ form } A_1, ..., l_{\omega_{\infty}}^{\tau} \text{ form } A_r),$$

$$H_2 \in \upsilon_2(l_{\omega_{\infty}}^{\tau} \text{ form } B_1, ..., l_{\omega_{\omega}}^{\tau} \text{ form } B_s).$$

Пусть теперь $\Omega = \{x_{i_1},...,x_{i_r}\} \cap \{x_{j_1},...,x_{j_s}\}$. Положим $R_{i_m} = A_m$, если $x_{i_m} \notin \Omega$, $R_{i_m} = P_{j_k} = A_m \times B_k$, если $x_{i_m} = x_{j_k} \in \Omega$ и $P_{j_k} = B_k$, если $x_{j_k} \notin \Omega$, m = 1,...,r, k = 1,...,s. Очевидно, что $R_{i_m} \in \mathfrak{F}_{i_m}$ и $P_{j_k} \in \mathfrak{F}_{j_k}$. Положим $\mathfrak{M}_{i_m} = l_{\omega_\infty}^{\tau}$ form R_{i_m} , $\mathfrak{M}_{j_k} = l_{\omega_\infty}^{\tau}$ form P_{j_k} , m = 1,...,r, k = 1,...,s. Поскольку для любых m = 1,...,r, k = 1,...,s справедливы включения $l_{\omega_\infty}^{\tau}$ form $l_{\omega_\infty}^{\tau}$

 $\upsilon_1(l_{\omega_{\infty}}^{\tau}\operatorname{form} A_1,...,l_{\omega_{\infty}}^{\tau}\operatorname{form} A_r)\subseteq \upsilon_1(\mathfrak{M}_{i_1},...,\mathfrak{M}_{i_r}),$ $\upsilon_2(l_{\omega_{\infty}}^{\tau}\operatorname{form} B_1,...,l_{\omega_{\infty}}^{\tau}\operatorname{form} B_s)\subseteq \upsilon_2(\mathfrak{M}_{j_1},...,\mathfrak{M}_{j_s}).$ Значит, выполняется включение

$$\upsilon_{1}(l_{\omega_{\infty}}^{\tau} \operatorname{form} A_{1}, ..., l_{\omega_{\infty}}^{\tau} \operatorname{form} A_{r}) \vee_{\omega_{\infty}}^{\tau}
\upsilon_{2}(l_{\omega_{\infty}}^{\tau} \operatorname{form} B_{1}, ..., l_{\omega_{\infty}}^{\tau} \operatorname{form} B_{s}) \subseteq
\subseteq \upsilon_{1}(\mathfrak{M}_{i_{1}}, ..., \mathfrak{M}_{i_{r}}) \vee_{\omega_{\infty}}^{\tau} \upsilon_{2}(\mathfrak{M}_{i_{1}}, ..., \mathfrak{M}_{i_{r}}).$$

Так как

$$\begin{split} & l_{\omega_{x}}^{\tau} \operatorname{form} H_{1} \vee_{\omega_{x}}^{\tau} l_{\omega_{x}}^{\tau} \operatorname{form} H_{2} \subseteq \\ & \subseteq \upsilon_{1}(l_{\omega_{x}}^{\tau} \operatorname{form} A_{1}, ..., l_{\omega_{x}}^{\tau} \operatorname{form} A_{r}) \vee_{\omega_{x}}^{\tau} \end{split}$$

$$\upsilon_2(l_{\omega_{\infty}}^{\tau} \text{ form } B_1, ..., l_{\omega_{\infty}}^{\tau} \text{ form } B_s),$$

то справедливо включение

$$l_{\omega_{\infty}}^{\tau}\operatorname{form}H_{1}\vee_{\omega_{\infty}}^{\tau}l_{\omega_{\infty}}^{\tau}\operatorname{form}H_{2}\subseteq$$

$$\subseteq \upsilon_1(\mathfrak{M}_{i_1},...,\mathfrak{M}_{i_r}) \vee_{\omega_n}^{\tau} \upsilon_2(\mathfrak{M}_{i_1},...,\mathfrak{M}_{i_r}).$$

Следовательно,

$$G \in \upsilon_1(\mathfrak{M}_{i_1},...,\mathfrak{M}_{i_r}) \vee_{\omega_x}^{\tau} \upsilon_2(\mathfrak{M}_{j_1},...,\mathfrak{M}_{j_s}) =$$

$$= \upsilon(\mathfrak{M}_1,...,\mathfrak{M}_n),$$

где \mathfrak{M}_i — однопорожденная τ -замкнутая тотально ω -насыщенная подформация формации \mathfrak{F}_i , i=1,...,n. Снова получили противоречие.

Предположим теперь, что группа G не является монолитической и $\mathrm{Soc}(G) = N_1 \times ... \times N_k$, где N_i — минимальная нормальная подгруппа группы G, i=1,...,k $(k \geq 2)$. Обозначим через M_i наибольшую нормальную подгруппу группы G, содержащую $N_1 \times ... \times N_{i-1} \times N_{i+1} \times ... \times N_k$ и не содержащую N_i . Ввиду леммы 2.8 $B_i = G/M_i$ — монолитическая группа с монолитом $N_i M_i / M_i$, G-изоморфным N_i , и $M_1 \cap ... \cap M_k = 1$. Имеем $B_i \in \mathrm{U}(\mathfrak{F}_1,...,\mathfrak{F}_n)$. Поскольку $|B_i| < |G|$, то по индукции для группы B_i найдутся такие группы $S_{i1} \in \mathfrak{F}_1,...,S_{in} \in \mathfrak{F}_n$, что

$$\begin{split} B_i &\in \upsilon(l_{\omega_{\infty}}^{\tau} \text{ form } S_{i1}, ..., l_{\omega_{\infty}}^{\tau} \text{ form } S_{in}), \\ i &\in I = \{1, ..., k\}. \end{split}$$

Положим $\mathfrak{X}_{ij}=l_{\omega_{\infty}}^{\tau}$ form $S_{ij},\ i\in I,\ j\in J=\{1,...,n\},$ и пусть

 $\mathfrak{X}_j=l_{\omega_\infty}^{\mathrm{t}}$ form $(S_{1j}\times...\times S_{kj})=l_{\omega_\infty}^{\mathrm{t}}$ form S_j , где $S_j=S_{1j}\times...\times S_{kj}$. Так как $S_{ij}\in\mathfrak{F}_j$ при любом $i\in I$, то $S_j\in\mathfrak{F}_j$. Поскольку $S_{ij}\in\mathfrak{X}_j$ для любого $i\in I$, то $\mathfrak{X}_{ij}\subseteq\mathfrak{X}_j$. Поэтому для всякого $i\in I$ в силу леммы 3.8 имеет место включение

$$\upsilon(\mathfrak{X}_{i1},...,\mathfrak{X}_{in})\subseteq \upsilon(\mathfrak{X}_{1},...,\mathfrak{X}_{n}).$$

Поскольку $B_i \in \mathrm{U}(\mathfrak{X}_1,...,\mathfrak{X}_n)$ для любого $i \in I$, то в силу леммы 2.8 группа G принадлежит формации $\mathrm{U}(\mathfrak{X}_1,...,\mathfrak{X}_n)$ как подпрямое произведение групп, изоморфных группам $B_1,...,B_k$. Противоречие.

Если $\omega = \mathbb{P} -$ множество всех простых чисел, то из теоремы 3.9 получаем

Следствие 3.10 [4]. Решетка l_{∞}^{τ} всех τ -зам-кнутых тотально насыщенных формаций является \mathfrak{G} -отделимой.

В случае когда τ — тривиальный подгрупповой функтор из теоремы 3.9 вытекает

Следствие 3.11 [6]. Решетка l_{∞}^{ω} всех тотально ω -насыщенный формаций является $\mathfrak G$ -отделимой.

ЛИТЕРАТУРА

- 1. Скиба, А.Н. Кратно ω -локальные формации и классы Фиттинга конечных групп / А.Н. Скиба, Л.А. Шеметков // Матем. труды. 1999. Т. 2, № 2. С. 114—147.
- 2. *Скиба*, *А.Н.* Алгебра формаций / А.Н. Скиба. Мн., Беларуская навука, 1997.
- 3. Сафонов, В.Г. К теории тотально насыщенных формаций конечных групп / В.Г. Сафонов. Гомель, 2008. 34 с. (Препринт / Гомельский гос. ун-т им. Ф.Скорины; N 15).
- 4. Сафонов В.Г., \mathfrak{G} -отделимость решетки τ -замкнутых тотально насыщенных формаций / В.Г. Сафонов // Алгебра и логика. 2010. Т. 49, \aleph 5. С. 692—704.
- 5. Shemetkov, L.A. On laws of lattices of partially saturated formations / L.A. Shemetkov, A.N. Skiba, N.N. Vorob'ev // Asian-European Journal of Mathematics. 2009. Vol. 2, № 1. P. 155–169.

- 6. Safonov, V.G. On $\mathfrak G$ -separability of the lattice l_∞^ω of totally ω -saturated formations / V.G. Safonov, V.V. Shcherbina // The 8th International Algebraic Conference in Ukraine dedicated to the 60th anniversary of Professor Vitaliy Mikhaylovich Usenko, July 5–12, 2011. Luhansk Ukraine. P. 125.
- 7. Сафонов, В.Г. Характеризация разрешимых однопорожденных тотально насыщенных формаций конечных групп / В.Г. Сафонов // Сиб. матем. журнал. -2007.-T.48, № 1.-C.185-191.
- 8. *Воробьев*, *Н.Н.*, Об индукивных решетках формаций и классов Фиттинга / Н.Н. Воробьев // Докл. НАН Беларуси. 2000. Т. 44, № 3. С. 21–24.

Поступила в редакцию 14.11.17.